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ABSTRACT

Three types of turbulence models which account for rotational e�ects in noniner-

tial frames of reference are evaluated for the case of incompressible, fully developed

rotating turbulent channel 
ow. The di�erent types of models are a Coriolis-modi�ed

eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress

model which accounts for dissipation rate anisotropies. A direct numerical simu-

lation of a rotating channel 
ow is used for the turbulent model validation. This

simulation di�ers from previous studies in that signi�cantly higher rotation numbers

are investigated. Flows at these higher rotation numbers are characterized by a re-

laminarization on the cyclonic or suction side of the channel, and a linear velocity

pro�le on the anticyclonic or pressure side of the channel. The predictive performance

of the three types of models are examined in detail, and formulation de�ciencies are

identi�ed which cause poor predictive performance for some of the models. Criteria

are identi�ed which allow for accurate prediction of such 
ows by algebraic stress

models and their corresponding Reynolds stress formulations.

I INTRODUCTION

Turbulent 
ows in noninertial reference frames are of considerable interest in a

variety of industrial applications. However, the success of a computational analysis

of such 
ow phenomena relies heavily on the choice of turbulence model. It is well-

known that, without some modi�cations, conventional isotropic eddy-viscosity models

fail to predict the e�ect of noninertial forces on turbulence, whereas second-moment

closures, for example, can account for noninertial e�ects in a systematic way.

An explicit algebraic stress model (EASM) has been developed by Gatski and

Speziale (1993) which is a nonlinear extension to an isotropic eddy-viscosity two-

equation model. This EASM allows for the inclusion of stress anisotropies and rota-

tion rate e�ects and is developed on a rigorous mathematical basis, while still keeping

the associated computational cost comparable to that of two-equation models. Pre-

vious results have shown that this approach is a viable approximation to the full

Reynolds stress closure for a variety of engineering 
ows. An extension to this EASM

which accounts for dissipation rate anisotropies in a systematic way and is applicable

to wall-bounded 
ows, has been recently evaluated (Xu and Speziale 1996), and is



based on an analysis of the exact transport equation for the dissipation rate tensor

(Speziale and Gatski 1997). This composite algebraic stress model (CASM) is ex-

tended here to include noninertial e�ects in the determination of both the stress and

dissipation rate anisotropies. The composite model di�ers from previously proposed

algebraic stress models in two ways: dissipation rate anisotropies are accounted for

in the constitutive relation and the coe�cient of the production term in the trans-

port equation for the scalar dissipation rate is now sensitized to the mean strain and

rotation rate tensors.

The objective of this study is to systematically explore the predictive capabilities

of explicit algebraic stress models in general and, in particular, the composite model

for the case of a fully developed turbulent channel 
ow with strong spanwise rotation.

This e�ort is an extension of previous work in that (1) the recent DNS obtained by

Lamballais et al. (1996) has yielded new data for rotation numbers that are higher

than those for the previous DNS study of Kristo�ersen and Andersson (1993) (as well

as the previous experimental study of Johnston et al.1972) and (2) the equations are

integrated up to the wall, whereas most of the previous computations were limited to

wall-function boundary conditions that are not suitable for (strongly) rotating 
ows

where regions of relaminarization can occur.

II TURBULENCE MODELS

The incompressible, fully developed rotating channel 
ow is a unidirectional 
ow

that results in simpli�ed expressions for the mean 
ow in the noninertial frame. In

this frame, the mean strain rate and rotation rate tensors
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where S = S(y) and y is the distance measured from the (bottom) wall of the channel,

as shown in Figure 1.

The common feature between linear and nonlinear eddy viscosity models is both

require the solution of only two transport equations; an equation for the turbulent
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where

�t = f�C�K�; � = K="; (5)
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Figure 1. Schematic of fully developed turbulent channel 
ow in a rotating frame

P = �2�12S is the turbulent production, �12 is the Reynolds shear stress, f2 and f�
are wall damping functions, C� is a closure constant, and � is the kinematic viscosity.

Three turbulence models will be evaluated by using (3) through (5): a Coriolis-

modi�ed eddy-viscosity model (EVM) proposed by Howard et al. (1980); , which is

based on the Launder and Sharma (1974) model; a realizable algebraic stress model

(ASM) (Shih et al. 1995); and a CASM that accounts for dissipation rate anisotropies

(Xu and Speziale 1996). These three models are distinct in the way rotational e�ects

are incorporated into their formulations.

In the EVM, the noninertial modi�cation is phenomenological and based on an

analogy with curved boundary layers. This type of modi�cation was used recently by

Pettersson et al. (1996) to rotating channel 
ow but at much lower rotation numbers.

The realizable ASM model of Shih et al. (1995) includes the e�ect of mean rotation

and has been tested on rotating homogeneous shear 
ow. The CASM is an algebraic

stress model which is directly extracted from a full Reynolds stress closure as well as

a transport equation for the tensor dissipation rate "ij. Thus, the model includes the

e�ects of an anisotropic dissipation rate in a algebraic stress framework.

The Coriolis-modi�ed eddy-viscosity model uses the Boussinesq-type relation for

the Reynolds stresses:

bij = �f�C�

��Sij; bij =

�
�ij � 2

3
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coupled with the relations to close (3) through (5):
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where C�

� = C� = 0:09, C�

"1 = 1:44, C"2 = 1:92, �K = 1, �" = 1:3, and 
 is the

rotation rate of the reference frame.

The Reynolds stress algebraic equation model (Shih et al. 1995) is given by

bij = �C�

��Sij + c2�
2(SikWkj �WikSkj) (11)

and

Wij � !ij + �mji
m; 
m = (0; 0;
) (12)

where for this unidirectional shear case
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u� is the friction velocity, f� = 1:0, C� = 0:09, C�

"1 = 1:44, C�

"2 = 1:92, �K = 1, and

�" = 1:3.

The composite algebraic stress model that accounts for dissipation rate anisotropies

(Xu and Speziale 1996) is a extension of the EASM of Gatski and Speziale (1993) in

inertial frames. In the noninertial case, the process is complicated by the fact that

the system rotation enters di�erently into the anisotropic dissipation rate and the

algebraic stress relations.

First, noninertial e�ects are introduced into the explicit algebraic anisotropic dis-

sipation rate equation developed by Speziale and Gatski (1997) as
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C"5 = 5:8, and �3 = 0:6.

In the absence of rotation, this explicit algebraic anisotropic dissipation rate model

could be directly inserted into the explicit algebraic stress model and the resulting
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composite explicit algebraic equation could be solved in conjunction with the tur-

bulent kinetic energy and the dissipation rate equations. In the noninertial frame

this direct substitution is not possible, and the problem can be quickly identi�ed

by examining the implicit relation for the algebraic stress model that is used as the

starting point for the tensor polynomial expansions associated with the explicit rep-

resentations. The implicit relation that accounts for dissipation rate anisotropies can

be written as
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C1 = 3:4 + 1:8P=", C2 = 0:36, C3 = 1:25, and C4 = 0:40. These constant closure

coe�cients are obtained from the SSG pressure-strain correlation model (Speziale et

al. 1991). A comparison of (17) and (22) clearly shows that in general the rotation rate

tensors in the noninertial frame that are extracted from the algebraic dissipation rate

model and the algebraic stress model are not the same. This di�erence precludes a

simple combination of terms as suggested by (21) and shown to be possible in inertial

frames (Xu and Speziale 1996), where integrity bases were used to get a composite

explicit representation for the Reynolds stresses.

As an alternative to this approach, consider (21) rewritten as the matrix system

Ab = � (�1�s+ gd) (24)

where

b = [b11; b12; b22]
T ; s = [0; S; 0]T ; d = [d11; d12; d22]

T (25)
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The system in (24) can be inverted analytically to obtain explicit expressions for

the Reynolds stress anisotropies bij (and �ij). Once again, these stress relations are

coupled with (3) and (4) for the turbulent kinetic energy and the turbulent dissipation

rate, with

D = E = 0; f2 =

"
1 � exp
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f� = 1:0, C� = 0:094, C�

"2 = 1:83, �K = 1, and �" = 1:3. The additional (noncon-

stant) term in the expression for C�

"1 represents a production ratio of the turbulent

dissipation rate (d12S) and turbulent kinetic energy (b12S).

III RESULTS

The turbulence models presented in the last section are coupled with the stream-

wise momentum equation

@U
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2
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(30)

where ui = (U; 0; 0); G is the (constant) e�ective pressure gradient, which includes
the centrifugal force term; and the bulk Reynolds number Reb = hUb=�, with Ub

as the bulk velocity. Equation (30), coupled with the transport equations for the

turbulent kinetic energy (3) and the turbulent dissipation rate (4), is integrated to

steady state by a one-dimensional second-order �nite-di�erence scheme. This simple

one-dimensional spatial problem allows for solutions with arbitrarily high numerical

accuracy by using a su�cient number of points. Here, 200 points were typically used,

with highly stretched meshes near the solid walls.

Because the di�erent rotation regimes considered by the DNS (Lamballais et al.

1996) were obtained at the same bulk Reynolds number, the pressure gradient in the

numerical code was adjusted in order to have Reb = 2500 at convergence. In the

following, results for three di�erent rotation numbers, de�ned by

Ro = 2j
jh=Ub (31)

are shown (Ro = 0, Ro = 0:5, and Ro = 1:5). In the earlier DNS study of Kristof-
fersen and Andersson (1993), the maximum rotation number studied was 0:5. Thus,

the DNS data used in this study signi�cantly increases the validation range for the

turbulence closure models.

The pro�les of the mean velocity and turbulent kinetic energy are shown in Figures

2 and 3, respectively. The turbulent kinetic energy, as well as the turbulent stresses

to be presented, are scaled by an average friction velocity u� , which is the half-sum of

the friction velocities on both walls. The DNS results show the characteristic linear

region of slope 2
 in the mean velocity, which leads to a mean absolute vorticity

2(S � 
) that is close to zero. These results also show that the turbulent kinetic

energy is higher on the anticyclonic or pressure side (y = 0) than on the cyclonic

or suction side (y = 2), where relaminarization occurs. In Figure 2, for the mean

velocity the composite model is able to reproduce all features of the 
ow for the

three rotation numbers considered, including the linear portion of the pro�le and the

relaminarization on the cyclonic side, characterized by a parabolic velocity pro�le.

For the turbulent kinetic energy shown in Figure 3, the asymmetry of the pro�le

and the higher turbulence intensity on the anticyclonic side of the channel are clearly

visible and are consistent with the DNS results. In the case for which Ro = 0, the

6



peaks in turbulent kinetic energy near the wall are not well predicted because in the

CASM no f� damping function has been introduced.

The Coriolis-modi�ed model of Howard et al. (1980) gives reasonable predictions

for the mean velocity at the di�erent rotation numbers although not with the same

degree of accuracy as the CASM. The algebraic model of Shih et al. (1995) does

not correctly predict the mean velocity at these higher rotation numbers since it

fails to predict the linear pro�le on the anticyclonic side and the relaminarization

on the cyclonic side. For the turbulent kinetic energy, both the Howard and Shih

models misrepresent the behavior of the kinetic energy in the higher rotation rate

cases. At Ro = 0:5 and Ro = 1:5, the Coriolis-modi�ed EVM yields results that

e�ectively damp out the turbulent kinetic energy in the relaminarizing portion of the


ow, whereas the Shih algebraic stress model is somewhat insensitive to the e�ects

of rotation.
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Figure 2. Mean velocity pro�les for (a) Ro = 0, (b) Ro = 0:5, and (c) Ro = 1:5.

4 4 DNS (Lamballais et al. 1996); , CASM; , ASM (Shih et al. 1995); ,

Coriolis-modi�ed EVM.
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Figure 3. Turbulent kinetic energy pro�les for (a) Ro = 0, (b) Ro = 0:5, and (c)

Ro = 1:5. 4 4 DNS (Lamballais et al. 1996); , CASM; , ASM (Shih et al.

1995); , Coriolis-modi�ed EVM.

With the success of the CASM, further investigation of the 
ow dynamics is worth-

while by examining the total shear stress. At steady state, (30) can be integrated
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with respect to y and expressed in wall units as

� �+12 +
2

Re�
S+ = u2�0

"
1 � y

2
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(32)

where u�0 = u� jy=0 , u�2 = u� jy=2 , and Re� = hu�=�. As this equation shows, the
total shear must vary linearly across the channel for all rotation rates. The partition

of the total shear stress between the turbulent �+12 and viscous 2S+=Re� stresses is

illustrated in Figure 4 for the composite model. The region of neutral stability, where

the velocity pro�le is linear, is characterized by a turbulent shear stress that varies

linearly, and a viscous shear stress that remains constant.
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Figure 4. Partition of the total shear between turbulent and viscous shear stresses:

computations by CASM for (a) Ro = 0, (b) Ro = 0:5, and (c) Ro = 1:5. ,

��+12 + 2S+=Re� ; , ��+12; , 2S+=Re� .

In addition to the turbulent shear stress, the normal Reynolds stresses are signi�-

cantly a�ected by the rotation. Figure 5 shows the attenuation of the normal stress

components on the relaminarized side of the channel at both nonzero rotation num-

bers. On the turbulent side, the streamwise component �11 is attenuated relative to

the Ro = 0 case, and both the �22 and �33 components are enhanced relative to the

Ro = 0 case. The most signi�cant e�ect is on the �22 component, but even at the high

rotation case the �33 component also exceeds the �11 component on the anticyclonic

side. This result is consistent with the DNS results and can be explained by the fact

that the CASM is derived from a Reynolds stress model and will, therefore, inherit

the right sensitivity of the production terms for the individual normal stresses to the

rotation. On the other hand, the stress anisotropies predicted by the model of Shih

et al. (1995) in (11) for unidirectional shear, where b11 = �b22 = 2c2(S� )
2(1� 


S
) and

b33 = 0, show that this coupling of the b11 and b22 forces the incorrect prediction of

isotropic turbulence when 
 = S, and which would preclude the correct prediction of

the normal stresses as displayed in Figure 5.

Both the presence of the linear velocity pro�le and the relaminarization process
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Figure 5. Turbulent normal stress pro�les for (a) Ro = 0, (b) Ro = 0:5, and (c)

Ro = 1:5. DNS (Lamballais et al. 1996) data: 4 4, �11; 2 2, �22; � �, �33.
CASM: , �11 , �22; , �33.

can be explained. The CASM is derivable from the Reynolds stress model
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where �Dij (and �DK = �Djj=2) represent the e�ects of turbulent and viscous di�usion;

�1, �2, �3, and g are given in (23). The implicit form of the algebraic stress model

is obtained by setting the left side of (33) to zero and using the appropriate closure

model for the dissipation rate anisotropies (such as the one shown in (16), which is

used here). Note that the equilibrium hypothesis that underlies the algebraic stress

models is exactly satis�ed here ( _�ij = _K = 0), and the only approximation that is

made is �Dij =
�ij

K
�DK .

An examination of (33) shows that the anisotropy component b12 must satisfy the

following equation:

0 = b12

�
1 � 4

3
�23(S� )

2 + 4�22(S� )
2R2

�
+ ��1S� (34)

where R is given in (27), and
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"
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S�
+ �3(d11 + d22)� �2R(d11 � d22)

#
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As could be expected, this expression for b12 has the same functional form as the

EASM:

b12 = ���1C��S�; C�� =
�
1 � 4

3
(S� )

2
�
�23 � 3�22R2

���1
(36)

Thus, in both the composite model and the EASM the production-to-dissipation rate

ratio is always given by
P
"
� �4b12S� = 4��1C��(S� )2 (37)
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showing that P
"
is a function of both 
=S and S� . By interchanging this dependency,

the behavior of 
=S as a function of P
"
and S� ,




S
=

1

�c!

2
641� 1

�2

vuut��1

�P
"

��1
+

1

3
�23 �

1

4(S� )2

3
75 (38)

can be studied. For comparative purposes, a corresponding 
=S relationship can also
be obtained from an expression equivalent to (37) for the Shih et al. (1995) model;
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Figure 6 shows the evolution of 
=S across the channel for the di�erent rotation
regimes and the three models considered. For the two rotating cases, several features

are apparent. Starting from values near zero on the anticyclonic side (because S

is high near the wall), the DNS results clearly show a plateau at 
=S = 1, then

quickly grow and change sign at the location of the maximum velocity (S = 0). On

the cyclonic side, 
=S (< 0) then approaches zero with a y�1 behavior (S � �y
in the relaminarized region). The �gure shows that the CASM closely follows the

DNS results and accurately predicts the location of maximum velocity. With (38),
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Figure 6. Scaled rotation rate variation across channel for (a) Ro = 0, (b) Ro = 0:5,

and (c) Ro = 1:5. 4 4 DNS (Lamballais et al. 1996); , CASM; , ASM

(Shih et al. 1995); , Coriolis-modi�ed EVM.

we can explain why the CASM model is able to predict such features, and we shall

see that the reason is closely related to the expression for C��, which must show the

correct dependency on 
=S and S� . By their nature, the CASM, and more generally,

all of the algebraic stress models that are consistently derived from Reynolds stress

models inherit the correct behavior for C��, while algebraic stress models that provide

a C�� expression based solely on constraints such as realizability, calibrations, and

phenomenological argumentsmay not have the correct behavior and will fail to predict

the neutral stability region and the relaminarized zone that is observed in the rotating

channel.

For larger values of S� (i.e., >� 3), the last term under the root in (38) is negligible

compared with the other terms, and 
=S becomes a function of P

"
only, and takes
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values on the two limit branches that correspond to the sign of S(= �jSj). Now, it
is also easy to verify that these two values of 
=S rapidly become independent of an

increasing P

"
, and asymptote to either (
=S)+ (S > 0) or (
=S)� (S < 0). Equation

(38), therefore, shows that for a wide range of values of S� and P

"
the value of 
=S

becomes e�ectively independent of these parameters, and takes values close to (
=S)�.

These two limiting values only depend on the values of the model coe�cients �i's,

and have the following values for the SSG pressure-strain model: (
=S)+ = 0:992

and (
=S)� = �0:103. In the channel away from the walls, the di�usion of K may

be expected to be small, and we should have P

"
� 1 and S�>�3. In this case, the

scaled rotation rate will have values on the limit branches that will be close to the

limit values (
=S)�.

Figure 7 illustrates this phenomenon by showing the evolution of the scaled rotation

rate correlated with the variation of P

"
across the channel. In Figure 7(a), the two
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Figure 7. Scaled rotation rate variation versus P

"
in the channel for (a) CASM, (b)

ASM (Shih et al. 1995), and (c) Coriolis-modi�ed EVM. , Ro = :5; , Ro = 1:5;

, limit branches (shown for (a) only).

limit branches given by (38) with values of S� � 3 are represented by dashed lines.

At P

"
= 0 and y = 0, the curves that correspond to the CASM simulation at the

two rotation regimes �rst move in a region where (
=S)� < 
=S < (
=S)+ because

the values of S� that are given by the model are also very small. However, as P

"

rapidly increases with movement away from the near-wall region, S� increases also,

and the points collapse on the (positive) limit branch. Until very near the wall at

y = 2, the value of S� stays at values su�ciently high to force the points to stay

on the limit branches. After having attained values close to (
=S)+ = 0:992 for the

major portion of the channel on the anticyclonic side, the maximum velocity point is

reached, P
"
becomes very small (as S ! 0) and the negative limit branch is followed

after the maximumvelocity. For most of the values 
=S < (
=S)�, the corresponding

value of P
"
on the negative branch is very small, and according to (3), we can expect

@K=@t < 0, which leads to relaminarization in this region.

This explanation for the occurrence of the linear pro�le and the relaminarization

process is also valid for other Reynolds stress models (i.e. other pressure-strain cor-

relation models). For example, the LRR model (Launder et al. 1975) yields limiting

values for 
=S of (
=S)+ = 0:644 and (
=S)� = �0:131 for the anticyclonic and
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cyclonic sides, respectively. However, one would expect that the slope of the linear

velocity pro�le, when compared to DNS, would not be correct. Note also that these

results are independent of the particular model for " that is used, because the e�ect

enters only through S� and P

"
.

The same analysis can be carried out on the Shih et al. (1995) model by using (39).

With this model, the evolution of S� always has an e�ect on 
=S, and no limiting

behavior occurs. Therefore, the system is then not forced to reach the asymptote


=S � 1, which precludes attainment of a linear velocity pro�le on the anticyclonic

side (Figure 7(b)). From P

"
= 0 at y = 0, P

"
quickly increases and the resulting

curve is obtained from the balance of the model equations and (39). The fact that

this model cannot reproduce the correct features for the rotating channel at high

rotation numbers can be attributed to the lack of a mechanism in C�

� to render 
=S

independent of S� and P

"
.

Finally, for the Coriolis-modi�ed EVM, relation (37) cannot be used to �nd a

relation between 
=S, P

"
, and S� . Instead, (4) can be examined at steady state in

regions away from the walls where the damping functions and di�usive terms can

be neglected. The dissipation rate equation then yields the simple relation that the

production-to-dissipation rate ratio is C�

"2=C
�

"1 and




S
=

1

2

"
1�

s
1� 4

1:536(S� )2

�
C�
"1

P
"
� C"2

�#
(40)

For su�ciently high values of S� , the dependency on P

"
is totally removed, and 
=S

takes a value of 0 or 1. Other values of 
=S can only be reached when P

"
vanishes,

as shown in Figure 7(c). Thus, the model then yields an abrupt and total damping

of the turbulence. (See Figure 3.)

IV CONCLUSIONS

This study has shown that algebraic stress models consistently derived from Rey-

nolds stress models inherit the correct dependency to rotation, and noninertial e�ects

are automatically accounted for in a rigorous way. On the other hand, algebraic stress

models that try to generalize the eddy-viscosity hypothesis in a phenomenological way

are not necessarily directly extendible to non-inertial frames. As these results have

shown, the nonlinear eddy-viscosity function C�

� must be constructed with the correct

dependency on S� and 
=S. This study also demonstrated that the key features of

the rotating channel 
ow were controlled by mechanisms only remotely linked to

the dissipation rate equation, which would mean that phenomenological models that

attempt to account for noninertial e�ects solely through modi�cation of the source

terms in the dissipation rate equation may not be properly accounting for essential


ow physics.
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